Metrics of positive scalar curvature and generalised Morse functions, Part II
نویسندگان
چکیده
منابع مشابه
N ov 2 00 8 METRICS OF POSITIVE SCALAR CURVATURE AND GENERALISED MORSE FUNCTIONS , PART 1
It is well known that isotopic metrics of positive scalar curvature are concordant. Whether or not the converse holds is an open question, at least in dimensions greater than four. We show that for a particular type of concordance, constructed using the surgery techniques of Gromov and Lawson, this converse holds in the case of closed simply connected manifolds of dimension at least five.
متن کاملOn Higher Eta-Invariants and Metrics of Positive Scalar Curvature
Let N be a closed connected spin manifold admitting one metric of positive scalar curvature. In this paper we use the higher eta-invariant associated to the Dirac operator on N in order to distinguish metrics of positive scalar curvature on N . In particular, we give sufficient conditions, involving π1(N) and dim N , for N to admit an infinite number of metrics of positive scalar curvature that...
متن کاملA Quasifibration of Spaces of Positive Scalar Curvature Metrics
In this paper we show that for Riemannian manifolds with boundary the natural restriction map is a quasifibration between spaces of metrics of positive scalar curvature. We apply this result to study homotopy properties of spaces of such metrics on manifolds with boundary.
متن کاملPositive Scalar Curvature
One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [12, 11] derived from the Dirac operator. If a manifo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2013
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2013-05715-7